On the Implementation of a Modified
Sag-Szekeres Quadrature Method”

J. N. Lyness
Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439 U.S.A.
L. M. Delves

Institute of Advanced Scientific Computation
University of Liverpool L69 3BX
England

Abstract

We describe a modified Sag-Szekeres multidimensional quadrature algorithm and discuss
its implementation as a general-purpose library procedure on serial and parallel architectures.
Examples illustrate its effectiveness for both smooth and singular integrands.

1 Introduction

In the practice of numerical quadrature, many different special-purpose algorithms are available
and are efficient when used in the appropriate circumstances. We are interested in developing an
algorithm for more general use as a software item in a software library. Specifically we seek a general
purpose algorithm that accepts as wide a class of integrands and regions as possible, without grave
compromise of efficiency. To this end, we have chosen one suitable for N-dimensional integration
over a product region

Ry =R x REx ..RY,

where each R stands for one of [a, b], [a,00)(—00, b] or (=00, 00). The algorithm that we describe
uses a modified version of the Sag-Szekeres (1964) method in each direction. It is efficient when
the integrand function is regular over R or when it has integrable singular behavior confined to
vertices or edges of this region. This ability to handle edge singularities without special coding
makes it particularly appealing for a numerical library.

*This work was supported in part by the Mathematical, Information, and Computational Sciences Division sub-
program of the Office of Computational and Technology Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38, and by the Commission of the European Community within Esprit Project P2528: Supernode II.
Iyness@mcs.anl.gov; delves@liverpool.ac.uk
March 1998

2 One-Dimensional Algorithm for the Finite Interval [0,1]

As a preliminary to constructing a general N-dimensional algorithm, we focus on one dimension
and on the finite interval [0,1]. Here we seek an algorithm that will handle an integrable singularity
at x = 0 or at x = 1. The appropriate Gaussian rule is undoubtedly the most efficient rule known.
However, to implement this requires that a weight function incorporate the singularity; weights
and abscissas depend on the actual weight function. Extrapolation quadrature is marginally less
efficient and marginally more general than the Gaussian rule; it requires only limited information
about the singularity. Yet even this information, we believe, may not be not normally available to
the applications programmer.

However, a modification of the Sag-Szekeres approach does seem to be promising. Here the
trapezoidal rule is used, but it is applied to a transformed function. The transformation is or may

be the same for all integrands. The resulting rule is efficient for integrands that are analytic in
(0,1) and integrable in [0,1].

Following Sag-Szekeres (1964), we set

w(t) = %(1—|—tanh(1/(1 — 8= 1/1), (2.1)
P = S0 =07 7)1 tank?(1/(1— 1) — 1/1)),
and set 2 = (1) to effect
1= [swie= [oo,

We denote the integrand on the right by F(¢). We now apply an m-panel trapezoidal rule, namely,
X" = 5 S ()i m)
m :

to approximate
1 1
17 = [Pyt = [f@)d =17
0 0

The expression Q™ F may be treated as a conventional quadrature rule for f(2) whose abscissas
are ¥ (j/m) and whose weights are ¢'(j/m). Many functions (t) of form (2.1) are suitable; the
one chosen above was used by Sag and Szekeres (1964). This rule was later used by Murota and
Iri (1982), who called it the TANH rule and noted that it was a variant of the IMT method of
Iri, Moriguti, and Takasawa (1970) (see also Davies and Rabinowitz (1980)). (Takahasi and Mori
(1973) use the term TANH to refer to a completely different transformation.)

Several other choices for 1(¢) are described in the literature. All necessarily satisfy
$(0) =0, (1)=1and ¢'(t) > 0 for ¢ in (0,1),

and all suggested to date have ¢'(t) symmetric about ¢t = 1/2. Perhaps the earliest is a set due to
Korobov (1963); the most recent is a set due to Sidi (1993). For these, the functions ¢’(¢) comprise

a set of algebraic polynomials and a set of trigonometric polynomials, respectively. For integrands
without singularities, undoubtedly Sidi’s functions are excellent and probably more efficient than
the ones we have proposed. We have retained the choice (2.1) because in some respects it is more
convenient for functions with unbounded singularities at the end point.

Clearly when f(z) is bounded in a finite interval (A,) and #(¢) is monotonic and differentiable,
it follows that F'(t) = f(¢(t))¥'(t) is also bounded in this interval. When f(z) has a singularity at
z = 0, it may or may not happen that F'(¢) has a singularity at ¢ = 0. This depends on the natures
of f(z) and of ¥(¢). To fix ideas, let us suppose f(z) = z®. Then we have

1 d

PO = 600 = Lot g,
and we may confirm that F'(¢) is integrable
[F = /1 Fidi= 1 o] = 1 ez
0 a+1 o a-+1

and is naturally identical with I f. For some values of «, it may happen that F(¢) has a singularity
at £ = 0.

Theorem 2.1 For f(z) = 2% and choice (2.1) for 1 (t), we have

F(t) ~ (1/t*) (exp(—=2/1))* T as t approaches 0+ .

This is straightforward to prove.

It follows that, even though f(z) is singular at z = 0, the natural continuation of F'(¢) and
all its derivatives at t = 0 are zero. Clearly one may omit the function value at ¢ = 0 in form-
ing the trapezoidal rule sum. Ultimately, the convergence rate of a sequence of trapezoidal rule
approximations is exponential in the number of panels used.

In this case, the corresponding functions of Sidi, while robust, do not produce a sequence that
converges exponentially. This situation is illustrated by the circumstance that for o greater than
but sufficiently close to —1, the limit in the theorem is infinite when F(¢) is calculated using these
trigonometric polynomials for ¢/(t).

3 The Numerical Stability of the One-Dimensional Algorithm for
Interval [0,1]

The formulas given in Section 2 appear to be straightforward to implement. In several distinct
places, however, careful programming is required to avoid unnecessary inaccuracy or breakdown
resulting from unexpected overflow or inconvenient underflow. Some of the underlying causes for
sensitivity are interrelated. All are connected with function evaluation at or near the integration
interval endpoints. (In the multidimensional extension considered later, this stability problem
occurs in each dimension separately.)

In the following discussion, it is important to distinguish between the underflow parameter, €,,
and the machine accuracy parameter, €,,. We shall illustrate the discussion by setting e, = 10773
and ¢,, = 107!2. This discussion is in the context of a machine with quiet underflow. That is, left
to itself, any number too small to be represented is simply replaced by zero.

The density of machine-representable numbers plays a key role in quantifying, understanding,
and controlling the numerical instability. Naturally, one tries to arrange the calculation so that the
most sensitive calculations are carried out where this density is greatest, namely near the origin.

In general, the smallest positive machine-representable number is the underflow parameter, €,.
Between ¢, and 2¢, are 1/¢,, different machine-representable numbers. In general, when X is a
power of 2, there are 1/¢,, machine-representable numbers regularly arranged between X and 2.X.
This pattern continues until the largest machine-representable number (usually approximately or
exactly 1/¢,). The negative machine-representable numbers follow almost exactly the same pattern.

As mentioned earlier, we treat the interval [0,1]. We term the zero end of this interval the
“sensitive” end, since there we can distinguish numbers very close to each other, this distance
being of order ¢,. We term the other end the “insensitive” end. The corresponding distance here is
€m- To help control the calculational error, we introduce the quantities # = 1—z and () = 1—(t).
It turns out that for ¢ in the interval (0.95,1), the nearest machine-representable number to (¢)
is 1. In some cases we can organize the internal coding so that we use t(t) and avoid 1 (t). This
allows a more sensitive calculation. But for ¢ in (0.99,1), we find 1)(¢) is represented by zero in the
machine. The end-point problem is mitigated but not removed.

It is a straightforward exercise to program the calculation of 1 (t), ¥ (t) = 1 — v (t), and ¥'(t) so
that each is available to near machine accuracy. Only one exponential call is required to obtain all
three. As mentioned above, when ¢ < 0.01 and when ¢ > 0.99, either ¢ (t) or ¢(¢) is smaller than ¢,
and hence cannot be represented in the machine. Normally, such a number would be replaced by
zero. For reasons that will become apparent later, we recommend that these minute numbers be
replaced by €,. However, when appropriate, we happily allow ¢’(¢) to be replaced by zero. When
t < 0.050or t > 0.95, either 1(t) or 9(t) is less than ¢,,. Note that all these quantities, however
small, are properly calculated to machine accuracy — except, of course, when they are too small

to be represented.

The calculation involves the numerical integration, using the trapezoidal rule, of the integrand
function F(t) = f(¥(¢))¥'(t). Since 9/(t) = 0 at the endpoints, it is obvious that when f(z) is
bounded, the endpoint contribution is zero and can be omitted. As shown above, when f(z) has
an integrable singularity at © = 0 or = 1, the integrand function f(¢(t))?¥’(t) is zero at t = 0 and
at t = 1. At these values of z, function evaluation of f(z) is unnecessary.

In theory, the abscissa @ = (¢) is 0 or 1 only when t = 0 or 1; otherwise, z = ¥(¢) in
(0,1). So, in an ideal world where there is “infinite-precision arithmetic”, we can safely use the
trapezoidal rule to approximate the integral, simply ignoring the two endpoint function values. In
practice, however, values of ¢)(¢) may appear that are closer to 0 (or 1) than to any othet machine-
representable number. It is necessary to ensure that, in such cases, these are not replaced in the
machine by 0 (or 1). If that were to happen and f(z) happens to have a singularity there, an
overflow would occur.

To obviate this possibility, the quadrature routine should replace #(¢) by max{(t),€,} near
t = 0 and by min{t(t), 1 —€,,} near ¢ = 1. Then it will not ask for a function value of f(x) precisely
at an endpoint of its integration interval. Naturally, the used-provided procedure from which f(z)
is calculated, must not overflow for any machine-representable number z € (0,1). It is important
to emphasize this precaution because, while function values at @ = 0 and 2 = 1 are not required,
function values at points & exceptionally close to z = 0 or = 1 may well be required.

Corresponding restrictions should be applied independently to (t). However, 1'(t) should not
be restrained in this way. When this is too small to be represented, it is replaced by zero.

The above remarks cover the situation at { = 0 and ¢ = 1. Next we turn to the situation near
these endpoints. To clarify our ideas, we look at the trapezoidal rule sum

1 m—1 . .
S G)G)]
7=1

For integrands f(z) that are regular, one may be tempted to omit terms for which ¢'(¢) is less than
the machine accuracy parameter. Doing this, one omits about 5% of the integration interval at
each end. If the program omits the corresponding function evaluation, a 10% economy may ensue.
However, in some cases unnecessary inaccuracy could arise: for example, if f(z) were large very
near an endpoint but minuscule elsewhere. In particular, there is no justification for this doubtful
economy when f(z) has any sort of singular behavior at either endpoint.

To illustrate these remarks, we look at three examples, namely, f(z) = 1, f(z) = 2723 and

f(z) = (1 —2)~%/3. The exact integrals I f are 1, 3, and 3, respectively. We consider the fifty-panel
trapezoidal rule sum (m = 50). In the first two examples we examine the contribution of the three
terms j = 1, 2,3 to this trapezoidal rule sum. This is

0.02 % (f(£(0.02)) * ¢/(0.02) + £(1(0.04)) * 4'(0.04) + f(4(0.06)) % '(0.06)) =
0.02 (0.14D — 38 % £(0.28D — 42) 4+ 0.19D — 17 x f(0.15D — 20) + 0.15D — 10 f(0.28D — 13)).

We write this as
wy fi + wa fo + wafz
with
w; = 0.28D — 40, 0.38D — 19, and 0.30D — 12, (3.1)

respectively.

In the first example, f(z) = 1, and the first three terms contribute precisely these amounts to
a sum that is approximately 1. The first two terms, which are comfortably smaller than ¢,,, have
no practical effect on the result. If all three and the corresponding three at the other end of the
interval are ignored, the result may be compromised by an amount 0.60D-12.

That was a particularly simple example. The second example, f(z) = 2723 is quite different.
The three function values involved are not all 1, but they are large. They are

f; =0.23D429, 0.786D+ 14, and 0.11D + 10, (3.2)

respectively. Their respective contributions to the sum are obtained by multiplying them by the
weights in (3.1) above, giving

w;f; = 0.64D — 12, 0.29D — 5, and 0.33D — 3, (3.3)

respectively. Terms of this size cannot be routinely omitted simply because one of the factors
involved in their evaluation is small. Note that the computer has all these numbers available to
machine accuracy (i.e., in this example, to twelve decimal places). To make this description easier
to read, we have written down only the first two places in the above discussion.

The third example, f(z) = (1 —2)~2/3, is again different. Because of symmetry, one might have
expected this example to correspond in all significant respects to the previous example. However,
because the singularity is at the end ¢t = 1, the situation is much worse. Here the critical points
are the final three. We can calculate the weights correctly; these are the same as in (3.1) above.
The correct function values fso—; and the correct values of wso—; fs0—; are those in (3.2) and (3.3)
above. But 1(¢) has to be represented in the machine and has to be less than 1. The nearest
machine representable number is # = 1 — ¢,,, and so the largest value of f(z) calculable is about
1.00D+8. Hence, instead of function values (3.2) we find all three to be about 1.00D+8, which are
much too small. The true contributions (3.3) to the overall sum are then underestimated, leaving
an overall error of about 0.30D-3.

Clearly, a singularity at ¢ = 1 is unwelcome. The user should, if possible, arrange that the
singularity occurs at the ¢ = 0 end of this integration interval, possibly reprogramming the integrand
function to exploit the higher density of machine- representable numbers in that neighborhood.
However, as we shall see later, the user need not worry about any singularity induced by the
transformation from an infinite or semi-infinite interval. This is taken care of automatically in any
proper implementation.

4 The One-Dimensional Algorithm for Other Intervals

One advantage of our approach is that it can be modified to intervals other than [0,1] by means
of an additional transformation of a user-provided function g(y). This transformation, denoted by

y = a(z), is chosen so that
b 1
| sy = [rayia.

Here we allow either or both of ¢ and b to be infinite but assume, when germane, that b > a.
Naturally there is a wide choice of possible transformations. For our program, we have chosen

y=a+(b-a)z, [f(z)=(b-a)gla+t(b-a)z), [a,b]
at+1=t fle)=a2%g(a+ (1-2)/2), [a,00) (4.1)
b—122, fla)=a” (b— (1—2)/z), (—o0,0]

y=im -5 J@)=07+01-2)7

g(1/(1=a) = 1/a) (=s0,00).

In our implementation, the user provides ¢g(y). It is clear from the transformations that when |g(y)]
is bounded in (a,b), then |f(z)| is bounded in (0,1). But it is easy to show that when a or b is
finite, then any singularity of ¢g(y) at ¢ or b may induce a corresponding singularity of f(z) at 0
or 1. Moreover, in general, when the interval is semi-finite or doubly infinite, one may encounter a
transformation-induced singularity in f(z) at the end of [0,1] which corresponds to infinity.

In the preceding section, we discussed in some detail the care necessary to deal with a singularity
in f(z). In the present case, the user provides g(y) and our program determines f(z). We have
to arrange that this part of our program provides an integrand function f(z) thatis finite for
all machine-representable z € (0,1). Doing so is not difficult because the terms that induce the
singularity are = (t) or # = 1 — 2 = 1(t), and these can be determined so long as z or # exceeds
€y-

For example, on the semi-finite interval [a, c0), suppose
9(y) = (W + (y - a)?)*/?
with o < —1 to ensure convergence. This gives rise to
1—-=
J@) = 7% <a+ -) :
— $—2$—a(/\2$2 + (1 _ w)Z)oz/Z‘

For noninteger «, this has a singularity at * = 0. In the integration of f(z), the quantity 2=2

is critical. This quantity is isolated by the program and accurately calculated. The value of
g (a + 1—795) for x close to zero is small but is readily calculable and not sensitive to small changes
in y. Thus, the coding of this can safely be left to the user. When the singularity is at the insensitive
end & = 1, the term z is provided by the program and plays the same role as above.

We note that the program for the finite interval demands that, for all machine-representable
numbers in (0,1), the function f(z) not exceed the highest machine-representable number. To
ensure this, the user must provide a function g¢(y) that does not produce overflow in f(z) when
f(z) is calculated using one of (4.1).

The user may exploit the result in the following theorem by choosing M near the overflow
parameter and “capping” the integrand function ¢(y) appropriately.

Theorem 4.2 Let g(y) satisfy

a, b finite lg(y)| < M/(b—a) forally, (i)
a finite, b infinite lg(y)| < M/4 and (y — a)?|g(y)| < M/4 for all y , (ii)
both infinite lg(y)| < M/12 and y*|g(y)| < M/5 for all y . (1ii)

Then |f(z)] < M for all z € (0,1).

Proof. Part (iii) may be established as follows. The fourth transformation in (4.1) yields

o) = (1 + =55z) o) = Fo gl (4.2

where, using y(1 —)2 = 22 — 1 we may express Fy = Iy(2) as a function of z.

(a) When z € {%, %}, Fy(z) is a convex function symmetric about # = 1; its minimum in this
interval is Fp(3) = 8 and its maximum Fy(3) = Fo(2) = 11%. Using this (4.2) and the first

inequality in hypothesis (iii) above, we find

1 2
|f(z)|=Fogly) <M for all z € [575]]
(b) When z € (0, %), we exploit the second inequality in hypothesis (iii) in much the same way.
We set

f(@) = Fay*g(y)

and find Fy(2) = Fy/y? to be monotonic increasing in this interval, with F3(0) = 1 and
F3(3) = 5. Thus,

1
|f(ac)|:F2y2|g(y)| <M for all = € (0,5).

The same result for @ € (2,1) establishes part (iii) of the theorem.
Parts (i) and (ii), which are simpler, are established in a similar way.

5 The Multidimensional Algorithm

The extension of the algorithm to more than one dimension is trivial: we use a product trapezoidal
rule with product mapping. There is, however, additional interest in the implementation details,
and we discuss these in the context of a MIMD distributed-memory architecture.

The sums required are product trapezoidal rule sums. In the context of a parallel computer,
one convenient method for evaluating any product sum is using a cyclic distribution of the function
evaluations. We describe this now in a four dimensional setting in a slightly more general context
than we need. The generalization to other dimensions is straightforward.

We consider a product rule of the form

ny m2 N3 N4
— 122 3 g4y, 1,93 4
QF - Z Z Z Z F(le ’ x]27 $]3, x]4)w]1w]2 w]s w]4 : (5'1)

5=152=1j53=1js=1
In our application we ignore boundary points so n; = m; — 1 and, in each dimension, all weights

are equal so
wh =1/my, ji=1,2,...n; k=1,234.

We now reindex this sum, using a single index £ defined by

{ = ji+nij2+ ningjs + ninanajs

= j1+ n1(J2 + n2(Js + nsja)).

It is straightforward to verify that this mapping is one to one and that ¢ € [1, L] with L = nyngngny.
Given a value of ¢ € [1, L], one may find j1, jg, j3, and j4 by successive division. The sum (5.1) may
be reexpressed, first in the form

L
QF = Z F(xo)w(x¢), (5.2)

=1

and then, with any integer p > 1, in the form

QF = Z_:Sq = Z Z F(x)w(xe) | - (5.3)

=1 | mgmod p)
te(1,1]

The overall effect is that we have partitioned the sum in (5.1) into p different and distinct sums,

which may be handled respectively by the p different processors. The number of elements in each
sum S, is either |L/p] or |L/p] + 1.

The interesting aspect of a program to effect this is that there is no need for any processor to
be explicitly aware of the values of ¢ involved. All of the processors are initially provided with
(or calculate simultaneously) a list of weights and abscissas x?k, wfk Jr=1,2,...,n k=1,2,3,4.
Each processor handles a selection of allowable indices (j1, ja, Js, ja), that is, a set where each j; is
within limit, namely, j; € [1, n;].

The program handles an allowable index (ji, j2, j3, j4) by adding into a running sum the con-
tribution
1,2 3

4
wj wi, wywj, Pz

1 2 3 4
J1 "2 73)

g1 Tz Tyar Ty

The ¢-th processor is initialized by being given index (¢,1,1,1). (As long as ¢ € [1,nq], this is
allowable. If it is not, one applies the procedure described below to transform this index into an
allowable index.)

After an allowable index (j1, j2, j3,j4) has been processed, the next index considered is (j; +
P, J2, Ja, Ja). If this is allowable, it is processed immediately. Otherwise, it is transformed into an
allowable index by applying a sequence of transformations, each of the type

T Ji=Ji—m
Ji+1 = Ji+1 + 1.
If 71 is out of limits, transformation 7 is applied as many times as necessary to put j; into limits.
Next T3 and then 75 are applied in the same way. Should js become out of limits (while jy, j2, j3 are

in limits), the part of the calculation assigned to this processor is complete. The same algorithm
may be described in the following way.

«) if j3 > ny, then j; = j; — nq and j2 = j2 + 1; goto «)
B) if jo > ng, then jy = jo — ny and jz = jz + 1; goto f3)
v) if j3 > na, then j3 = jz — ng and js = js + 1; goto)

If it finds j4 > ng4, the sum is complete and the processor should return its contribution to the first
(or a master) processor or, in some other way, amalgamate the distinct sums.

A program arranged in this way has several “computing virtues”:

1. Simplicity: Each processor is given an identical program.
2. Adaptability: p, ny, ng, ns, etc., appear as simple parameters.

3. Low Interprocessor Communication: Communication is needed only at the start (to assign
the initial point) and at the end (to assemble the final result).

4. Even Load Balancing: The points have been shared as evenly as possible. Each processor
takes a fair share of easy and difficult regions.

We close this section with some remarks about load balancing. The key to even load balancing
is the elimination of processor wait time. If all function evaluations take an identical time (and
there are many problems in which this is the case), then arranging even load balancing reduces
simply to seeing that each processor treats, as far as possible, the same number of points. The
scheme described above does this, as would most properly constructed schemes.

When function evaluation times differ from point to point, a more interesting or challenging
situation arises.

It is convenient to define a difficult (easy) point as one where the function takes a longer (shorter)
time than average to evaluate. A difficult (easy) region is one that contains a preponderance of
difficult (easy) points. This depends only on the integrand function. A simple example of an
easy region might be an an edge where one component required in the calculation of the function
value happens to be identically zero. An example of a difficult region might be an edge where,
exceptionally, a limiting process has to be simulated to evaluate the function. Note that this
depends simply on the time required to make the function evaluation. This is quite distinct from
the concept of difficult or easy regions in the context of adaptive quadrature. That depends on the
smoothness of the integrand.

The circumstances required for even load balancing are slightly different in a MIMD environ-
ment, where the processors act independently, from the circumstances in a SIMD environment,
where the processors act in lock step. To pinpoint the difference, let us suppose that the order in
which the abscissas were treated was entirely random. In a MIMD environment this is desirable.
With luck, each processor would receive the same mix of easy and difficult points, so each would
have the same amount of work to do and each would finish at about the same time; during the
process, none have been kept waiting. On the other hand, this random ordering could be one of

10

the worst possible for a SIMD environment. The difficult points would be randomized too, and
each time slot would contain a mix of difficult and easy points. Thus a processor apparently lucky
enough to be treating an easy point might well find that, when it has finished this point, it has to
wait until all other processors, some of which may be contemporaneously treating difficult points,
have also finished.

Clearly, what is needed for both the MIMD and the SIMD environments is that each processor is
assigned roughly the same number of difficult points and the same number of easy points. However,
in the SIMD environment, the ordering may be critical while in the MIMD environment, this
ordering is immaterial.

On the other hand, hypothetically, a good situation for a SIMD environment might be one
in which the points were treated strictly in order of difficulty. All processors go slowly when the
difficult points are being treated and all speed up when they treat the easy ones.

We now return to the scheme described above and see how these different environments react
to a situation in which there exist well defined easy and difficult regions but it is not known a priori
where these are. First, we note that the points of local regions are dispersed among the different
processors. This is precisely what is wanted in both MIMD and SIMD environments.

In addition another effect may be helpful in a SIMD environment. Specifically, points in the
same locality are being treated to some extent at the same time. To wit, there are roughly [N/p]
sets of p points that are treated simultaneously. Approximately a proportion of (ny — p+ 1)/ny
of these sets comprise p adjacent points. The time taken for each set is the time taken by the
slowest (which is the most difficult) member of that set. Thus, when the difficult points occur
in well-defined local regions, there is a good chance that, to some extent, difficult points will be
processed at the same time.

6 Numerical Examples

The procedure described above has been implemented as a parallel library routine, running on
transputer-based systems, as part of Esprit project P2528: Supernode 1I; (see Plowman (1992).
This routine is scheduled to appear in the quadrature section of the Liverpool-NAG Transputer
Software Library. We give here some results obtained using this routine, to demonstrate the rapid
convergence obtained with both smooth and singular integrands, and to demonstrate the routine’s
effectiveness on a parallel MIMD architecture.

6.1 Examples

We consider the following two dimensional problems, taken from Plowman (1992):

L f e Vdady = 1n2 2. [5° JoC exp(—a? — y?)dady =

1
3 Jo Jo mrdudy = 5 (V24 1)+ VI 1) 4 57 f57 VEFGexp(—e — y)dedy = 2

11

6.2 Convergence of the Method

The convergence obtained by this method, as the number of function evaluations is increased, is
exponential in nature. This is illustrated in Table 1.

In each of these 24 examples, the same number of panels, m, was used in each of the two
dimensions. Thus, the number of function evaluations required in each example is (m — 1)?. These
results were obtained with four processors using 64-bit IEEE arithmetic. Once the machine precision
is approached, the actual error depends slightly on the number of processors. This effect is not
limited to a parallel implementation. Naturally, the final figure or two in any result depends on the
actual coding. The last column gives the time taken, in seconds, for Problem 4 on one processor.
Timings for the other problems are similar to these.

Table 1. Absolute error for four problems

m | Problem 1 | Problem 2 | Problem 3 | Problem 4 | Time (P.4)

4 | 1.3E-01 1.5 1.6E-01 1.9 0.11

8 | 3.3E-04 3.0E-01 1.1E-03 7.4E-02 0.11
16 | 2.8E-07 2.8E-02 7.2E-06 7.5E-03 0.13
32 | 1.6E-10 1.9E-04 2.0E-08 5.8E-06 0.18
64 | 8.9E-16 4.0E-08 1.1E-11 2.2E-12 0.41
128 | 2.2E-16 4.4E-16 1.8E-15 2.2E-16 1.31

These results are demonstrably consistent with exponential convergence for Problems 1 and 3
and superexponential convergence for Problems 2 and 4.

6.3 Parallel Performance

It is no surprise that the method implements well on a parallel distributed-memory architecture,
since multidimensional quadrature methods are in general “embarrassingly parallel”. In Table 2
we illustrate this by giving the measured speedup factors

S(p) =TM)/T(p),

where T'(n) is the time required when using n processors. Times were taken on a Transtech T800
system with 20 MHz processors and links; the configuration uses a master/slave paradigm with
T800 master. We give two sets of results, using m = 64 and m = 128, respectively. Absolute
timings were given in Table 1.

Table 2. Speedup factors S(p) for p slave processors

12

P Problem 1 | Problem 2 | Problem 3 | Problem 4

m = 64
2 1.8 1.8 1.8 1.8
4 3.1 3.0 2.9 3.1
8 4.4 4.2 3.9 4.3
m = 128
2 2.0 2.3 1.9 1.9
4 3.8 3.6 3.6 3.7
8 6.6 6.7 6.1 6.8

The results are as expected: for fixed m and increasing p, the speedup factor achieved is limited
by the initialization of the library routine rather than by the cost of the final collection of partial
sums from each processor. With the dynamic loading mechanism used for the transputer library,
this initialization cost is dominated by the cost of sending the code for the integrand function
to each slave, which takes place when the routine is called. Naturally, this cost is relatively less
significant for larger problems. Indeed, the timings obtained provide an estimate of about 0.11
seconds for the overheads involved.

7 Acknowledgments

The routine used was implemented by Dr. Steve Plowman; we are indebted to him for many lengthy
discussions of implementation details.

13

References

[1]

[2]

P. J. Davies and P. Rabinowitz (1980), Methods of Numerical Integration, 2nd edition, Aca-
demic Press, New York (1980), pp. 142-144.

N. M. Korobov (1963), Number-Theoretic Methods of Approximate Analysis, GIFL, Moscow
(1963) (in Russian).

M. Mori (1978), An IMT-Type Double Exponential Formula for Numerical Integration, Pub.
Res. Inst. Math. Sci. Kyoto Univ., 14, pp. 713-729.

M. Iri, S. Moriguti, and Y. Takasawa (1970), On a Certain Quadrature Formula, Kokyuroku of
the Res. Inst. for Math. Sci. Kyoto Univ., 91 , pp. 82-118 (in Japanese). English translation
in J. Comp. Appl. Math., 17, pp. 3-20.

K. Murota and M. Iri (1982), Parameter Tuning and Repeated Application of the IMT-type
Transformation in Numerical Quadrature, Numer. Math., 3, pp. 347-363.

S. Plowman (1992), Trapezoidal Rule Quadrature Algorithms for MIMD Distributed Memory
Computers: Part 2 Implementation, Supernode 11 Working Paper, Centre for Mathematical
Software Research, University of Liverpool, U.K. (1992).

T. W. Sag and G. Szekeres (1964), Numerical Evaluation of High-Dimensional Integrals, Math.
Comp., 18, pp. 245-253.

H. Takahasi, and M. Mori (1973), Quadrature Formulas Obtained by Variable Transformation,
Numer. Math., 21, pp. 206-219.

A. Sidi (1993), A New Variable Transformation for Numerical Integration, in H. Brass and G.
Hammerlin (editors) Numerical Integration IV, Birkhauser, Berlin; ISNM 112, pp. 359,373.

14

